

Search for $Z \rightarrow \tau \tau$ at 13TeV

June 13th, 2016

Andrew Johnson

The CMS Collaboration

On behalf of the EXO-16-008 team

- Physics motivation
- Tau selection
- Background estimation
- Results and limits
- Summary

Physics Motivation

- Standard Model (SM) of particle physics is incomplete
 - No gravity, no dark matter candidate, hierarchy problem...
- Some Beyond-Standard Model (BSM) theories add an extra gauge group to SM
- Expect to see an extra neutral resonance, Z', as a result
- Some theories predict enhanced Z' coupling to 3G
- CMS excluded Z'-> $\tau\tau$ to 1.4 TeV during 8 TeV run, using only $\tau_e\tau_\mu$ channel, to 1.4 TeV (all channels) during 7 TeV run

τ Physics

- Four channels considered in Z'->ττ analysis
 - $\tau_e \tau_{\mu}$, $\tau_e \tau_{h}$, $\tau_{\mu} \tau_{h}$, $\tau_h \tau_h$
 - 2-4 missing neutrinos in each channel
- "τ_h" denotes hadronic decay
- ee, μμ channels not explored due to large background from Z->ee/μμ decay
- Efficiency for eµ highest

Analysis Strategy

- Look for events with two τ candidates
 - High pT (momentum)
 - Decay products passing ID criteria ("clean")
 - back-to-back
 - Opposite sign
 - Lots of missing energy (MET)
- Blind signal region (SR) until we understand background distributions
- Estimate BG contributions via data-driven analysis
- Unblind and study visible+MET distributions
- Look for excesses/set limits

Signal shape broad, peaked at high mass

Background Estimation

Expected events in full mass range

smaller yields in τ_hτ_h due to higher pT threshold

(QCD)

Process $e\tau_{\rm h}$ $\tau_h \tau_h$ $\mu \tau_{
m h}$ еμ Drell-Yan 8 ± 3 882 ± 127 321 ± 37 375 ± 40 W+jets 0.1 ± 0.1 916 ± 96 19 ± 6 456 ± 35 Diboson 29 ± 7 0.5 ± 0.5 18 ± 4 108 ± 11 $t\bar{t}$ 26 ± 7 26 ± 6 223 ± 20 Multijet 49 ± 13 122 ± 84 250 ± 50 36 ± 16 Total 58 ± 13 1976 ± 180 1125 ± 73 707 ± 47 Observed 55 1807 1113 728

Mix of MC & data-driven estimates

Expected events at high mass (m(τ₁,τ₂,MET)> 300 GeV)

	Process	$ au_h au_h$	$\mu \tau_{\rm h}$	$e au_{ m h}$	еµ	
	Drell-Yan	5 ± 2	16 ± 4	9 ± 4	4 ± 3	
	W+jets	0.004 ± 0.004	23 ± 9	7 ± 5	0.2 ± 0.5	
(QCD)	Diboson	0.02 ± 0.02	6 ± 3	3 ± 2	23 ± 5	
	$tar{t}$	\ \ - //	4 ± 2	5 ± 3	65 ± 12	
	Multijet	18 ± 6	4±3	9 ± 3	0.8 ± 1.0	
	Total	23 ± 6	51 ± 11	33 ± 8	93 ± 13	
	Observed	20	42	40	96	
						$\overline{}$

QCD Estimation in ThTh

Data driven estimation using "ABCD" method

Take shape from SS region (C)

Derive OS/SS SF using low-MET CRs (B/D)

$$N_{QCD}^{Signal}(m_{\tau t E_T}) = N_{QCD}^{C}(m_{\tau t E_T}) \times \frac{N_{QCD}^{B}}{N_{QCD}^{D}} = N_{QCD}^{C}(m_{\tau t E_T}) \times R_{OS/SS}$$

QCD Shape Validation

- Shape taken from SS sideband, normalized to OS yield
- Check data/estimation in low-MET sideband
- Good agreement between data and estimation
- Shapes provide robust estimation

Shape in D normalized to yield in B

Good agreement!

Unblinded Results

Fair agreement
between
observation and
SM expectation in
all channels

Combined Limit

Exclude m(Z') < 2.12 TeV (1.9 TeV expected)

New record limit!!

Current CMS limit for Z'->ee/ $\mu\mu$ is m(Z') < 2.96 TeV

Summary

- Search for high τ-τ+MET mass performed in pp collisions at sqrt(s) = 13TeV
- Backgrounds estimated using primarily data-driven methods
- All channels show agreement with SM
- We exclude a Z' decaying to τ-τ below 2.12 TeV